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Abstract

In this report, we propose a set of domain independent and human independent
restrictions on actions and we show that the restrictions can prevent actions from
being improperly defined. Then, based on the set of restrictions, we propose a new
conflict detecting method for nonlinear plans and we show that this new method
is sound and complete.
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1 Introduction

Basically, planning can be seen as an activity of manipulating actions. In the planning
literature, actions are defined in an ad-hoc fashion. There do not yet exist human inde-
pendent rules to distinguish between “correctly defined” actions and “incorrectly defined”
actions. We believe that for any properly defined action, all its properties (i.e. precon-
ditions and postconditions) have some kind of inherent connection among them. None
of these properties can be detached from the definition of the action and none of other
irrelevant properties can be attached to the definition. For example, we can’t expect
that an action can be properly implimented with one of its preconditions unsatisfied. We
find that the inherent connection among the properties of an action can be captured by
domain constraints.

Domain constraints specify impossible states of a planner’s world in a specific domain.
For example, in the blocks world, (On(x,y), Clear(y)) is a domain constraint which states
that it is impossible that block y is clear when block x is on the top of it and vice-versa.
In planning, domain constraints are used to improve planning efficiency by pruning the
search space to avoid branches which will lead to impossible states specified by the domain
constraints (Warren, 1974; Drummond & Currie, 1987; Currie & Tate, 1989; Currie &
Tate, 1990; Allen, 1991a). Kelleher et al. suggested that some of the domain constraints
can be automatically constructed from actions (Kelleher & Cohn, 1992; Kelleher, 1990).
This, from the other direction, confirms the mutually dependent relation between actions
and domain constraints.

In this report, we propose a set of domain independent and human independent
restrictions which gives a formal description of the mutually dependent relation between
the actions and the domain constraints in a problem domain. We also show that these
restrictions can prevent actions from being improperly defined.

Nonlinear planning is believed to be exponentially more efficient than linear planning
(Chapman, 1987). Nonlinear planning avoids most of the unnecessary backtrackings
experienced by linear planning. However, some other computational problems arise in
nonlinear planning. One of the problems is that it is more difficult to verify nonlinear
plans than to verify linear plans. This difficulty is caused by the fact a nonlinear plan
is partially described. A nonlinear plan is partially specified in two ways, the orderings
are partially specified and the variables in the plan are partially described. A nonlinear
plan is conflict free only if all the possible completions of the partially specified plan are
conflict free.

Based on the proposed restrictions on actions, in this report, we present a new ap-
proach to detect conflicts in nonlinear plans. Using this new method, instead of by
considering all the possible completions, we detect conflicts in a nonlinear plan by check-
ing that if the set of domain constraints in the concerned problem domain is satisfied by
the nonlinear plan. We term this conflict detecting method domain constraint mainte-
nance. we prove that, under the proposed restrictions, a nonlinear plan is conflict free
if and only if the corresponding set of domain constraints is satisfied in its model; i.e.
domain constraint maintenance is sound and complete.

2 Preliminaries

In this section, we give descriptions of domain constraints and models of nonlinear plans.
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For deductive planners, planning is a reasoning process within some formal logic. In
(Zhang, 1994), we presented a point-based, reified temporal interval logic for nonlinear
planning. In the temporal logic, time is discrete and is in a partial order structure;
time points are the only temporal primitives and, therefore, time intervals are referred
to by their end-points; assertions of proposition types are interpreted over the biggest
possible time intervals; a proposition type is associated with a time interval through a
global predicate; there are two proposition types, property and action in the logic; to
distinguish between these two types, we use two global predicates Hold and Ezec. The
atomic formula Hold(P,t;,1;) expresses that the property P holds true over the biggest
possible time interval (#;,¢;) and the atomic formula Fxec(A,t;,t;) expresses that the
action A is executed over the biggest possible time interval (¢;,7;). An interpretation of
the temporal logic is a tuple M = (W, R, D,xp, 7p), where M is a set of time points; R
is a partial order relation among the time points in W; D is the domain of non-temporal
variables; 7 is an interpretation of the function symbols and 7p is an interpretation of
the proposition types. In appendix A, we give the formal definition of the temporal logic.

In a state-based language, a domain constraint expresses that two properties which
are defined to be mutually exclusive are not allowed to hold true at the same state or
time point. In our nonlinear interval temporal logic, if two properties are defined to be
mutually exclusive, then the temporal intervals over which they hold true respectively
must not possibly and properly overlap. Then, a set of domain constraints ¥p for a
problem domain is a set of formulas of the form:

Vt17t27t37t4.(H01d(p, tl,tz) A HOld(q,t37t4) — tg ‘\< t3 vV t4 ‘\< tl)

If ¥Xp contains the above formula, the properties p and ¢ are said to be mutually exclusive
according to Xp. In the following discussion, for convenience, we often use the notation
p e ¢ to represent the domain constraint of the above form. It is not difficult to prove
that if a nonlinear temporal model satisfies a domain constraint of the above form, then
the intervals of the two properties involved will not possibly and properly overlap.

In this temporal logic, a nonlinear plan can be expressed as a well formed temporal
formula.

Example 1 In the blocks world, let P be a nonlinear plan consisting of two actions
Exec(Puton(A, T, B),t1,11), which moves block A from the table T to the top of block
B at the time point t1, and Fxec(Puton(B,T,C),t3,13), which moves block B from the
table T to the top of block C at the time point ty. In P, both time points t; and ty are
after the initial time point Ty and there is no direct temporal relation between ty and t5.
This nonlinear plan can be expressed as a well formed formula as follows.

P = Fxec(Puton(A,T,B),t1,t1) NTo < t1 A
Exec(Puton(B,T,C),ty,t2) AN Ty < 1o

In planning, a given problem domain can be described by a set of actions I and a set
of domain constraints Xp. In our temporal logic, each action in I' can be specified by
a set of formulas in Horn clause form ((Zhang, 1994)). However, in this report, we only
concern ourselves with the relationship between the actions and the domain constraints.
To make the results in this report widely applicable, we use the STRIPS representation
of actions to explore this relation. In STRIPS representation, an action consists of a set
of preconditions, a set of deleted properties and a set of asserted properties.
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W ={ t;: t; is a time point in P} U{Ty, T} where Ty represents the initial time point
and T, represents the universal ending point.

R =A{t; <t;:t; <1; is a temporal relation of P} U
{To < tit; < Tw : for every time point t; in P.}

For every action A in P

7p(A) = {(t;,t;): A is executed at t; in P.}

For every property p which is either a precondition or a postcondition of an action in P
7p(p) = {(t:,t;) : if one of the following conditions holds.

1. p is an asserted property of an action evecuted at t; in P and

(a) p is a deleted property of an action at t; in P and t; < t; holds in P,
and there is no other action which deletes p and is executed at time points
between t; and t; in P.

(b) Otherwise t; = T.;

2. pis a precondition of an action evecuted at t and both the following conditions

hold

(a) pis an asserted property of an action executed att; and t; <t and there is
no other action which asserts p and is executed at the time points between
t; and ty in P. Otherwise, t; = Tj.

(b) p is an deleted property of an actions executed at t; and ty, < t; and there
is no other action which deletes p and is executed at time points between
ty and t; in P. Otherwise, t; = T}

Let P be the nonlinear plan given in Example 1, then under the closed world assump-
tion and the definition of Puton(x,y, z) given in Figure 1, we can construct a nonlinear
temporal model of P as shown in Fig. 2. In this figure, T, represents the universal
ending point. A bi-directed line of a property indicates a time interval over which the
property hold true. For example, the property On(B,T') holds true over the interval that
is started from Ty and is ended at f5. One of the completions of this nonlinear plan, P,
is the linear plan in which the action Puton(A,T, B) is executed before Puton(B,T, ().

P' = Exec(Puton(A,T,B),t1,t1) ATy < t1 A
Exec(Puton(B,T,C),ty,t2) N Ty <ty ANty < 1y

This completion contains conflict. The action Puton(A,T, B) destroies the precondition
Clear(B) of the action Puton(B,T,C). Therefore, P is not conflict free. The conflict in
P can be detected by the fact that the domain constraint On(A, B) e~ Clear(B), i.e.,

Hold(On(A, B),t1,T) N Hold(Clear(B), Ty, Ts) = Too S 1 V Teo < To

is not satisfied in the temporal model of P.

The Temporal Model of Nonlinear Plan Definition connects a nonlinear plan with a
temporal model. Our purpose is to use domain constraint consistency checking in the
nonlinear temporal model of a nonlinear plan to detect conflicts in the nonlinear plan.
To achieve this, we need to explore further the internal connection between the set of
domain constraints > p and the set of actions I'.
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tion restriction, consistency restriction, inclusion restriction and minimum restriction.

3.1 Complement Restriction

Given a property p, we term all the properties in the problem domain which are mutually
exclusive with p according to a set of domain constraints Xp the complements of p
according to ¥p. The complement restriction requires that if a property is deleted by
an action, then at least one of its complements must be asserted by the action. This
requirement is based on the understanding that the real world is “complete”. That is,
in the real world, for any property, at any moment, either the property holds true or
one of its complements holds true. For example, the property that the room is empty is
mutually exclusive with the property that there are some people in the room, with the
property that there is a set of furniture in the room, with the property that there is a dog
in the room, et cetera. At any time, either the room is empty or there is something in it.
For the same reason, if a property is asserted by an action, then one of its complements
must be deleted by the action.

Definition 2 (Complement Restriction) Let Xp be a set of domain constraints and
I' be a set of actions. I' is said to be complementary for ¥p if the following conditions
hold. For any property p, if p is an asserted (resp. deleted) property of an action A
in I', then there exists at least one deleted (resp. asserted) property q of A such that
p e q € Xp.

Example 3 In the blocks world, let ' consist of the action Puton(x,y,z) which is described
in Fig. 1. Let ¥p be a set domain constraints defined below.

Y¥p = {On(z,y) e On(z,y)|yzy,
On(z,y) e~ On(x', y)|epe ry=Tabic,
On(x,y) e Clear(y)|yzTable,
Onl,y) o Only, )}

One can easily check that T is complementary for Xp. For example, the two asserted
properties On(x, z) and Clear(y) are mutually exclusive with one of the deleted properties
On(x,y) according to Xp. The I and Xp deseribed above will be referred to several times
when we discuss other restrictions in this section.

Example 4 The action paint-ceiling(ceiling) given in (Yang, 1989) can be expressed as
in Fig. 3. The property Have(paint) may or may not be deleted by the action. Even if it
is a deleted property of the action, it is still not considered to be mutually exclusive with
the asserted property Painted(ceiling). Therefore, there is not a deleted property which is
mutually exclusive with the asserted property Painted(ceiling). This definition of action
is not complementary. In reality, no one would purposelessly repeat painting the ceiling
forever. If one does need to paint the ceiling, he must have a reason such as the ceiling
is unpainted, the ceiling is in an unpleasant colour, the ceiling has not been painted for
over five years, et cetera. Any of the above properties should be mutually exclusive with
the property Painted(ceiling) according to a set of reasonable domain constraints. To
prevent the action from being purposelessly repeated forever, at least one of them should
be a precondition of the action and this precondition should be deleted by the action.
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4 Domain Constraint Maintenance

In the following discussion, whenever we state that a set of domain constraints ¥p and a
set of actions I satisfy the restrictions, we mean that I' is connective, consistent, inclusive
and minimum for Y p.

Given a nonlinear plan, we can build a nonlinear temporal model according to the cor-
responding set of action definitions. We suggest that the possible conflicts in a nonlinear
plan can be detected by checking whether the corresponding set of domain constraints
is satisfied by the temporal model of the plan. We term this conflict detecting method
for nonlinear plans domain constraint maintenance. In this section, we will prove that
domain constraint maintenance is sound and complete.

4.1 Domain Constraints via Necessary-Biggest-Interval Axioms

In our temporal logic for nonlinear planning, properties are asserted over the necessary
biggest possible time intervals. That is, if a property is asserted over an interval in an
interpretation, then the interval should be the biggest possible for the property in all the
completions of the interpretation®. This requirement can be captured by the following

temporal formula.

Vi1, to, 13, 14
(HOld(p, tl,tg) A HOld(p, t3,t4) — tz =< t3 vV t4 =< tl vV (tl == t3 A tg == t4))

This formula states that, for any two intervals of the same property p, either they are equal
or one of them is strictly before the other. We term such a formula necessary-biggest-
interval axiom and we often use g to represent the set of necessary-biggest-interval
axioms in a problem domain.

We will prove that if Xp is not satisfied by the temporal model of a nonlinear plan,
then the nonlinear plan contains conflicts. This means that ¥p is a necessary condition
for conflict freeness of nonlinear plans. However, ¥g is not a sufficient condition. For
example, if two different actions that have one common deleted property are executed
at exactly the same time point in a nonlinear plan, then ¥ may still be satisfied in the
temporal model of this plan. However, this nonlinear plan obviously contains a deleted
condition conflict.

The set of domain constraints Xp is stronger than Xg. We will show that ¥p is
necessary and sufficient for conflict freeness of nonlinear plans and Xp implies X5. The
necessary-biggest-interval axiom schema in our temporal logic corresponds to the main
proposition constraint in Allen’s interval temporal logic (Allen & Koomen, 1983; Allen,
1991b). Allen has already used a set of domain specific axioms (i.e. domain constraints)
to replace the main proposition constraint in his planning system. To quote Allen:

In general, we will not use this constraint?, but use domain-specific axioms
for predicates that are mutually exclusive. For instance, in the blocks world,
every block is always either clear, being held, or has another block on top of

it (Allen, 1991b).

3If an interpretation M is the tuple (W, R, D, 7p, 7p), then M’ = (W,C(R), D, 7p,7p) is a comple-
tion of M, where C(R) is a total order relation over the time points in W such that R C C(R).

“Here, Allen refers to the main proposition constraint which is corresponding to Xp in our temporal
logic.

15
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However, Allen did not explain why this replacement can be made and he did not give
the conditions under which the replacement can be made. We are going to deal with
these problems in this section. Before we prove the main theorem for these problems, we
give a useful proposition first. In fact, this proposition states the minimum restriction in
a different way and it is straightforward from the minimum restriction.

Proposition 2 Let Xp be a set of domain constraints and I' be a set of actions such
that Xp and I' satisfy the restrictions. For any property p, if p is an asserted property of
two different actions Ay and Ay in I or p is a deleted property of both the actions, then

either at least, one of the deleted properties of Ay is mutually exclusive with one of the
deleted properties of Ay according to ¥p

or at least, one of the asserted properties of Ay is mutually exclusive with one of the
asserted properties of A,.

The following theorem states that, under certain conditions, ¥p implies Y.

Theorem 1 Let Xp be a set of domain constraints and I' be a set of actions such that
Yp and ' satisfy the restrictions. Suppose that P is a nonlinear plan and M is the
nonlinear temporal model of P. If M satisfies Xp, then M satisfies Xg.

Proof Let p be any property. We are going to prove that if M satisfies ¥p, then M
satisfies the formula

HOld(p, tl,tg) A HOld(p, t3,t4) — tz =< t3 vV t4 =< tl vV (tl == t3 A tg == t4)

We prove this by induction on the number of the intervals over which p holds in the
model.

When the number of the intervals of p equals one, the theorem is trivially satisfied.
Suppose that the theorem holds when the number equals n — 1. Now, we prove that the
theorem holds true when the number equals n.

Suppose that the nth interval of p is asserted by action Ay at ¢, and finished by action
Ay at t/5. By induction hypothesis, the other n —1 intervals of p, (¢1,%}), ..., (tae1,t!_4),
must be in the linearity relation. By the complement restriction, there must be a deleted
property q of A; and an asserted property r of Ay such that p e ¢ € ¥p and p e r €
¥ p. By the assumption that ¥ p is satisfied by the model, the intervals of ¢ and r must
be in the linearity relation with the other n — 1 intervals of p. Without loss of generality,
we can assume that the interval of ¢ is between the ith and (i41)th intervals of p, see
Fig. 11.

Then there are only two possibilities about the position of the interval (¢/,¢;) of r.

Case 1. The interval of r is before the (¢ + 1)th interval of p. That is the temporal
relation #; < ;41 is satisfied in the model. In this case, the nth interval of p, (¢,,1)
is in the linearity relation with the other n — 1 intervals of p.

®We can choose the nth interval (¢,,t,) such that if ¢, = Tp, then !, # T., and if ¢/, = T, then
tn # 1u. Otherwise, there is only one interval of p.

16
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in the model. Therefore, the necessary biggest interval axiom for C'lear(B) is not satisfied.
According to the above theorem, this implies that the set of domain constraints ¥p is
not satisfied in the model. In fact, it is the domain constraint On(A, B) «~ Clear(B)
that is not satisfied in the model.

In this section, we have proved that ¥p implies ¥g5. However, the reverse relation
does not exist.

4.2 Soundness of Domain Constraint Maintenance

In this section, we are going to prove the soundness of domain constraint maintenance.
Domain constraint maintenance detects conflict in a nonlinear plan by checking whether
the temporal model of the nonlinear plan satisfies the corresponding set of domain con-
straints. Let P be an arbitrary nonlinear plan, M be its temporal model and ¥p be the
corresponding set of domain constraints. Domain constraint maintenance is said to be
sound if the fact that M does not satisfy Xp implies that P contains conflicts.

Theorem 2 (Soundness of Domain Constraint Maintenance) Let Xp be a set of
domain constraints and I' be a set of actions such that Xp and I' satisfy the restrictions.
Let P be a nonlinear plan that consists of the actions in I' and M be the nonlinear

temporal model of P. If P is conflict free, then M satisfies ¥p.

The proof of this theorem is given in Appendix B.
We have mentioned that ¥p is a necessary condition for conflict freeness for nonlinear
plans. This can be easily proved from the above theorem.

Theorem 3 Let Xp be a set of domain constraints and 1" be a set of actions such that ¥p
and I' satisfy the restrictions. Let P be a nonlinear plan that consists of the actions in T,
M be the nonlinear temporal model of P and Yp be the set of necessary-biggest-interval
axioms. If P is conflict free, then M satisfies ¥g.

Proof By Theorem 2, M satisfies ¥p. By Theorem 1, this theorem is proved. [ |

4.3 Completeness of Domain Constraint Maintenance

In this section, we will prove the completeness of domain constraint maintenance. Let P
be an arbitrary nonlinear plan, M be its temporal model and ¥p be the corresponding
set of domain constraints. Domain constraint maintenance is said to be complete if the
fact that P contains conflicts implies that M does not satisfy Xp.

Theorem 4 (Completeness of Domain Constraint Maintenance) Let
Yp be a set of domain constraints and I' be a set of actions such that Xp and 1 sat-

isfy the restrictions. Let P be a nonlinear plan that consists of the actions in I' and M
be the nonlinear temporal model of P. If M satisfies Y¥p, then P is conflict free.

18
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5 Discussion

In this report, we propose a set of domain independent and human independent restric-
tions on actions. These restrictions are not hard. The domain constraints and the actions
in most problem domains can satisfy these restrictions or can be reasonably modified to
satisfy these restrictions. We show that these restrictions can prevent actions from being
improperly defined. These restrictions also lay down the basis for domain constraint
maintenance. We believe that the basic principles of these restrictions can also be ap-
plied in automated program synthesis to regulate program statements and in automated
circuit design to regulate circuit units. It is desirable to automatically check if a given
set of domain constraints and a set of actions satisfy the restrictions proposed in this
report. For a limited set of domain constraints and a limited set of actions, the cost of
the checking is not prohibitive and the checking is needed only once for a specific problem
domain.

For a given finite nonlinear plan P, an algorithm of domain constraint maintenance
always stops in a limited time. If the nonlinear plan contains conflicts, the algorithm will
find and report the conflicts. Otherwise, the algorithm shows that the plan is conflict
free.

Given a nonlinear plan P, an algorithm for domain constraint maintenance needs
to check a domain constraint for each of the |P| actions in the plan, for each of the k
preconditions, p, of the action, for each of the [ properties, ¢, that are mutually exclusive
with p, for each of the m (< |P|) appearances of ¢ in the model of P. Therefore, such an
algorithm has the worst case time complexity of O(|P|*). Considering the O(|P|*) worst
case time complexity needed for the construction of the temporal model of P, the domain
constraint maintenance has the worst case time complexity of O(|P|*). Clearly, domain
constraint maintenance is much more efficient than detecting conflicts of a nonlinear
plan by checking all its possible completions. For checking every possible completions of
a nonlinear plan P, the worst case time complexity is O(|P|! x |P]*> x n™) where m is
number of variables in P and n is the average number of possible values for each variable.

Although not explicitly pointed out, the main theoretical results in this report are
achieved under the closed world assumption. This is because that, whenever we mention
a temporal model of a nonlinear plan, from the corresponding definition, we assume that
all the properties in the model are only affected by the actions in the plan.

In this report, we only concern ourselves with point actions. The corresponding results
for interval actions are given in (Zhang, 1994).

6 Acknowledgements

We would like to thank Behnam Bani-Eqgbal, Clare Dixon, lan Pratt and Rajeev Goré
who read an early version of this paper and gave valuable comments.
This paper is a modified version of part of Zhang’s Ph.D. thesis (Zhang, 1994). The

work was partially supported by the British Council and the State Education Commission
of China.

20

www.manaraa.com



A A Temporal Logic for Nonlinear Planning

A.1 Syntax

Given

DV a set of data variables,

TV: a set of temporal variables which is disjoint from DV,

DF': a set of data function symbols,

TF: a set of temporal function symbols which is disjoint from DF',

A: a set of primitive action symbols,

P: the set of primitive property symbols which is disjoint from A,

the set of data terms, T, is defined recursively as follows
1. ift € DV, then t € Tp,
2. if f € DF, arity(f) =n and ty,...,1, € Tp, then f(t1,...,1,) € Tp.

The definition of the set of temporal terms, Ty, is similar to that of data terms except
that the arguments of temporal functions are not restricted to be temporal terms. The
set of temporal terms, 17, is defined as follows:

1. ift €TV, thent e Tr,
2. feTF, arity(f) =n, and t1,...,t, € Tr UTp, then f(t1,...,t,) € Tr.
The set of well-formed formulas(wffs) is defined inductively as follows:

L. Ifdty,...,dt, € Tp, tty,tty € Tp, P € P, arity(P) = n, then
Hold(P(dtq,...,dt,), tty,1t3) is a wif,

2. if dtq,...,dt, € Tp, tt1,tty € Ty, A € A, arity(A) = n, then
FErec(A(dty, ... dt,), tty,1ts) is a wif,

3. if tty,tty € Ty, then tt; < tty and tt; < 1ty are wifs,
4. if ¢ and o are wifs, then so are =, @ A 1),
5. if pis a wif and v € DV JTV is a free variable of ¢, then Yv.p[v] is a wif.

We assume the usual definitions of V, —, <= and 4.

21
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A.2 Semantics

Definition 8 A partial order time structure is a pair (W, R) where W is a non-empty
universe of time points and R is a partial order relation between the time points in W.

Definition 9 Aninterpretation of a temporal language is a tuple : M = (W, R, D, 7, 7p)
where

(W, R) is a partial order time structure,
D is the domain of data for all the time points in W.

T is a interpretation of the function symbols. If f € DFUTF and arity(f) = n, then
mr(f) € (DUW)" — DUW.

7p is a interpretation of the proposition types (actions and properties). If P € PUA
and arity(P) = n, then wp(P) € D" — 2WW_ We require that if (t1,t) €
7p(P)(dty, ..., dt,), then (t1,t2) € R. To characterize that assertions are inter-
preted over the necessarily biggest possible intervals, 7p has the property that, if
(t1,t2), (t3,t4) € wp(P)(dty,...,dt,) and (t1,13) and (t3,14) do not refer to the
same time interval, then either (t2,t3) € R or (t4,t1) € R.

A wvariable assignment v for a given interpretation M, is a mapping from variable
symbols to the elements of the domains, v : (DV UTV) — (DUW) which satisfies sort
restriction, i.e. v(x) € Difa € DV and v(z) e Wifz € TV.

For a given interpretation M and variable assignment v, a term assignment 7 is a

mapping, 7 : (TpUTr) — (DUW) which can be defined as follows.
1. Ift € DVUTV, then 7(t) = v(t),

2. if f € DFUTF and arity(f) = n, then
T(f(tlv .. 7tn)) = ﬂ—F(f)(T(tl)v s 7T(tn))‘

The semantics of the wifs is given with respect to an interpretation M = (W, R, D, xp, 7p,)
and a variable assignment v. The satisfaction relation (|=)of the well formed formulas
under such a pair is defined recursively as follows.

(M,v) E Hold(P(dty,...,dt,), t,tts) iff
(T(th)m(ttz))w( )7 (tr), - 7(tn)
(M,v) E E:L'ec(A(dtl,.. dt,), tty, tts)

ff (7(tt1), 7(tt2)) EWP(A)( (t1), .- 7(tn))
(M,v) E 1 <tiff (7(t1),7(t2)) €

(M,v) E t1 tiff (7(t1),7(t2)) € R or 7(t1) = 7(t2)
(M,v) E —¢iff (M,v) E ¢ is false

(M,v) | (pAY)iff (M,v) =g and (M,v) =
(M,v) E Yopift (M,v') E ¢ for all v" which

agree with v except possibly on v.

22
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An interpretation M is a model for a wif ¢ (written as M | ¢) if (M,v) E ¢ for
all variable assignments v. A wif is a closed formula if it contains no free variables. If a
closed formula ¢ is satisfied by a interpretation M and a variable assignment, then M
is a model of . A wif ¢ is said to be satisfiable if it has a model. A wif ¢ is said to be
valid (written as |= ¢) if its negation is not satisfiable.

B Soundness of Domain Constraint Maintenance

Theorem 5 (Soundness of Domain Constraint Maintenance) Let Xp be a set of
domain constraints and I' be a set of actions such that Xp and I' satisfy the restrictions.
Let P be a nonlinear plan that consists of the actions in I' and M be the nonlinear

temporal model of P. If P is conflict free, then M satisfies ¥p.

Proof We prove that if ¥p is not satisfied by the model, then there exist deleted
condition conflicts in at least one of the completions of P.

Let (t;,t;) over which p holds true and (t;, ") over which ¢ holds be the pair of intervals
which is the nearest to the initial time point Ty such that p e~ ¢ € ¥p and neither t) < ¢;
nor t: < t; is satisfied in the model. By Definition 1, for any interval of any property in
the model, either it is asserted by an action or it is a precondition of an action. Then
there are three possibilities.

Case 1. Neither of the intervals of p and ¢ are asserted by an action. That is¢; = t; = T.
In this case, by Definition 1 (in page 3) and by the consistency restriction, they
must be preconditions of two different actions in P and there are no other actions
to reassert p and ¢ for these two actions. Then one of them should be “deleted” by
the requirement that the initial conditions for any problem should be consistent. A
deleted condition conflict in P occurs.

Case 2. Neither of the intervals of p and ¢ is a precondition of an action in the model.
By Definition 1, t; = #/ = T.,. By the consistency restriction, the two intervals
of p and ¢ must be asserted by two different actions, say A; at ¢; and A; at {;
respectively. According to the temporal relation between #; and ¢;, there are three
possible cases.

Subcase 1. Neither #; < ¢; nor ¢; < ?; holds in the model. See Fig. 14.

By the inclusion restriction, A; must have a precondition r such that either
r e~ g € Np orr=gqand ris a deleted property of A;. By the nearest to the
initial point assumption, r = ¢ and r is a deleted property of A;. Otherwise,
the pair of the intervals for r and ¢ is nearer to the initial point than that for
p and ¢. For the same reason, A; has a deleted property r’ such that ' = p.
Therefore r «~ 1’ € Yp. This contradicts the nearest to the initial point
assumption for the intervals (¢;,t;) of p and (;,7%) of ¢. So this case is not
possible in any model.

Subcase 2. {; < {; or t; < t; holds true in the model. Suppose t; < t;, see Fig. 15.
For the same reason given in the subcase 1, v’ = p. In this case, t; < ¢; and
the action A; deletes p. By Definition 1, the interval (¢;,t!) of p should not

exist in the model. Therefore, this is also an impossible case.
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